ED 098 942
AUTHOR
TITLE

PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
IR 001 318

Peelle, Howard A.

A Generalized Learning Game in APL.

2 May T4

10p.; Paper presented at the Annual Meeting of Shared
Educational Computer Systess (New Paltz, New York,
May 1974)

MF-$0.75 HC-$1.50 PLUS POSTAGE

Computer Programs; *Computers; Computer Science;
*Fducational Games; *Game Theory;:; *Prograsing
*APL; A Programing Language

The computer prograaming language APL is used to

describe a "learning" game, and the functions developed are
generalized to extend to a class of rules. (Author/RH)

S OIPARTMENTOF HFA: tre
FOUCATION R WF FaR-

NATIONAL INSTIPUTE OF O(
. EDUCATION
[A PRAEN Y LA RETY ae s
- TN e A Generalized Learning Game in APL
.'f_ ‘:“N“D'w AN TAT AN Ce
Y PR TN - . %
e A Howard A. Pealle

.r.r_\ R
At e “ e

University of Massachusetts
0 ABSTRACT
APL 1is used to describe a '"learning" game, generalized to a class of rules.

INTRODUCTION

Using a programming language as a conceptual framework for describing
topics has powerful implications for education--yet this approach is virtu-

v

ally unexplored. The rewards for using a succinct and executable notatien
like APL are found in simple, clear expressions which often yield insights
about the underlying nature of a topic. (See references [1] - [5]) APL is
particularly well-suited for describing topics involving interactive pro-
cesses, such as those encountered in gaming.

in this paper, APL is used to describe a simple learning process in a
computerized gaming context. A game provides a good envircoment for demon-—
strating learning by computer. Generally, games have well-dafined rules and -
objectives, narrow enough domains of discourse, and clear criteria for eval-~
uating performance. The meaning of "learning"” is, of course, limited to the
game environment and is usually defined in terms of improved performance on

a specified task--such as making winning moves.

THE GAME OF "LAST-ONE-LOSES"

The game chosen here to illustrate learning by computer is '"LAST-ONE~
LOSES'"--a variant of the ancient intellectual game of NIM. LAST-ONE-LOSES
is a two-person, zero-sum (win or lose) game with complete information which
involves removing objects from an initial pile of objects. The rules avxe
simple: One player moves first and may take i1 or 2 or 3 objects from the
pile; the second player moves next, likewise taking 1, 2, or 3 objects. The
players alternate moves in this fashion until there is only one object re-
maining. Then, whoever must take the last one loses!

There exists an optimal strategy aigorithm for LAST-ONE-LOSES; that is, .

from the start of the game, one of the players can always make moves which

guarantee a win. Before continuing, the reader is lavited to discover (and .
expreas!) the optimal strategy for this game.
The prior question is: How does one formally represant this game--its

interactive processes, simple s rategies, and mechanisms for learning?

S
4

. ‘ ' 00\}

REPRLSENTING THE GAME

To begin with, the basic interactive framewoerk for two players to com=-
pete in this game of LAST-ONE-LOSES 1s embodied in the program below.l

V LASTONELOSES

[1] PRIRT EGGS+?20 Note that here the objects in the
(2] MAKE:MOVE<Q game are named EGGS.

(3] PRINT EGGS+EGGS-MOVE

Cu] +IN IF EGGS=1

(s] +LOSE IF EGGS<1 At start of the game, the number
[6) NEXT:MOVE<[of EGGS is random.

(7] PRINT EGGS+EGGS~MOVE

(8] +LOSE IF EGGS=1

£9] +WI¥ IF EGGS<1 The messages on lines [11} and [13]
E 10] ,f’“{f E . . are expressed from the point of view
-
{13] LOSE:'YOUV WON THIS GAME.'
v PRINT displays the appropriate number
V PRINT EGCS of goose-EGGS.
(1] (EGGSTO)p 0O

v

Here, Ehe role of the coﬁputer is primarily that of mediator. 1t facilitates
the playing of the game and announces the winner at the end of the game.,
For the computer to participate directly in the competition as one of the
players, the following editing change is needed.
VLASTORELOSES[2 JMAKE : DeMO VE«COMPUTERYV
Also, a function must be developed to gemerate the COMPUTER': MOVE.
Writing a function which mskes legal moves at random is easy:

v MOVE«COMPUTER Note that the minimum of EGGS and 73 en-
(1] MOVE<«EGGSL?3 aures that the resultant MOVE is never
v larger than the number of EGGS available.

However, as most children will quickly articulate, this function repre-
sents an inferior stracegy. It makes "dumb" moves in the most obvious situa-
tions; it does not even remember its mistakes; and, clearly, it does not im~-
prove with any consistency from game to game. A functionm which learns as it
plays would certainly be more interesting.

lpiease observe that this program (as well as others to follow) is de-
signed to be as simple as possible--with minimal concern for efficiency but
high priority on readability. N.B. sub~function IF used in branching state-
ments:

V BRANCH<LINE IF CONDITIOR
(1] BRANCH«CORDITICN/LIRE
v

v

v

- LR X Sie oM

LEAPNTNG ' A

" 00+

One trivial kind of learning invoelves avoiding losing sequences. Of
course, the COMPUTER could be programmed to store all sequences of moves for
every game it played, to search through those sequences for ome which occurred
before, and -- if it found a losing sequence ~- to be sure not to repeat 1it.
This 1s a cumbersome learning scheme, although surely effective in the long
Tun.

Another approach to machine learaning involves building in some 'intelli-
gence' beforehand with a structure capable of adapting itself based on 'experi-
ence.’ (See reference [6] for details.) Such an "adaptive structure" provides
a way of representing information about a game and utilizes rules for making
changes in that informationm.

AN ADAPTIVE STRUCTURE

In order to build an adaptive structure for the game of LAST-ONE-~LOSES,
first a global variable is created: CUPS+Q% 3p13 (I call the variable CUPS
because one can conceptualize this matrix as four paper cups, each column con-
taining the numbers 1 2 3.)

cupPs j
1111 w
33 w2 curl curh

Next, a function must be designed to use the CUPS structure with a rule for
making a move. The rule is in two steps:
Step 1l: Determine WHICH column of CUPS to use according to the current
nusber of EGGS (as shown below):
EGGS 1 2 3 4 5 88 7 8 9 10 11 12 13 1iu e o o
WEICH 1 2 3 & 1 2 3 4 1 2 3 4 1 2 v s
Step 2: Then, PICK one of the numbers at random from that column (CUP).
This rule can be embodied in a new E;finition of the COMPUTER function.
Note that Step 1 is expressed on line

MOVE<+CCMPUTER [1] and Step 2 on line [3]. The reat
Cgi;ggggtigﬁlgfé;gﬁg ERMINE EGGS) of the function deals with the case
> A = f a CUP with all zeros.
MOVE«MQVE+PICK (CUP#0)/CUP of & CUF with all zere
+0 WHICH and MOVE record for later refer~
RANDUMB :MOVE+«EGGSL ?3 ence the actual numbers used to gener-
ate a MOVE.
Where sub-function DETERMINE 1e: ¢ WHICH<DETERMINE ECGCS
(1] WHICH+1+(N+1)|EGGS-1
v
and gub-function PICK is: V ONE<PICK MARY
(1] ONE«MARY[2o0MANY« MARY]
v

kel o SECUNRR LY -----s:‘:“?
SNCLEN R 00
—~ - ld

Now the program which accomplishes the adaptive learning can be defined.
The adapting process is simply: '"discard" the last MOVE which led to a loss.

Vv LEARN This LEARN program replaces with a O

[1) CUPSTMQYE: GURI+O the number in the column of CUPS WHICH
v

Finally, editing the main LAST-ONE-LOSES program will allow the COMPUTER
to LEARN after each game it loses:l YLASTORELOSES[14) LEARK ¢

LAST-ONE-~LOSES now exhibits learning.

LASTONELOSES

(o)
o

000000GOO0O0O

[B o
(o]
(o]
o

0 000O0O0O0O0

e O MO

r O WO
o
o
o
o

0
YOU WON THIS GAME.

CUPS After losing the game, the
adaptive structure CUPS ir

1111 modified. Note that the last
2 2 22 MOVE (3) is removed from CUP 1:
0 3 33

1To be more rigorous, i.e., to ensure that learning occurs only immedi-
ately after a game which COMPUTER lost but could have won, some additional

editing changes are recommended. See Appendix for complete displays of all
functions.

- 00t °

LASTONELOSES

O 0 0 ¢ ¢
0o¢ Again, CUPS has been adapted to:

3 .
0 Q0 00O
Q:
1
000 0 cuPsS
go 1111
G: 2 220
: 1 0 3 3 3

YOU WON THIS GANME.

Eventually, the adaptive structure becomes:

cupPs
0100
0020
0 003

From that point on, COMPUTER will make the optimal MOVE; that is, it will

win whenever a win is possible.

THE OPTIMAL STRATEGY

Some insights can be drawn from the final state of the adaptive
structure. Specifically, the pattern which emerged in CUPS reveals the
modular nature of the game, and hence, provides a clue to an expression
for the optimal strategy. The winning MOVE(at any time in the game when
forcing a win sequence is possible) iu given by the expression 4 |XGGS-1
where EGGS is the number of objects rasmaining. When a win is not
guaranteed (the other player has a fcrced win), this expression yields
0. Then NOVEmight as-well be randon and can be expressed as EGGSL?3

Defined as a single functien, thie optimal strategy is:

Vv MOVE+«CPTIMAL
(1] MOVE+4|EGGS~-1
(2] +0 IF MOVE=0
[3] MOVE«-EGGSL?3
v

00 «

ST CUFs Fun e

BN B
TEACRING THE COMPUTER

With the existence of an optimal strategy function, one might think
of using it to TEACH the COMPUTER. What better way to demonstrate
machine learning than to have one computer program train another!

After supplanting the OPTIMAL function in LAST-ONE-LOSES,

VLASTONELOSES[6 INEXT:MOVE«OPTIMALY

the process of lea.ning via an adaptive structure may be automated by the
‘ollowing TEACH program:

V TEACH HOWMANY

1] GAMES+0

(2] PLAY:LASTONELOSES

{3l +PLAY IF HOWMANY>GAMES+GAMES+1
v

One might want ‘to revise the LAST-ONB-LOSES pregrsm to occlude unnecessary
output and to record wins/losses, thusly:

Vv LASTONELOSES
(1] EGGS+220
2] MAKE:MOVE«COMPUTER
{3] EGGS+EGGS-MOVE
Lu] ~WIN IF EGGS=1
(5] +LOSE IF EGGS<1
[e] NEXT:MOVE«QOPTIMAL

[7] EGGS+EGGS~-MOVE

8l +LOSE IF EGGS=1

(9] +WIN IF EGGS<1 Note that the global variable
{10] +MAKE RECORD must be initially specified
[11% VI”:RECORD"RECORDQI elsewvhere

12 +0

(13] LOSE:RECORD«RECORD, 1
{14] LEARN

RECORD+\0

6

RISH CUeY AuasiE 00e

Now, for those who wish to examin. patterns of learning in more
detail -~ perhaps drawing analcgfes with biological learning -- "learning
curves" can be readily produced. Based on values recorded during the
TEACHing, a two-dimensional view of the COMPUYER's learning can be
graphed:

TEACR 50
GRAPR RECORD
C

% on
nee

aree

noeoe

ooreee

O prorece

qenorrorre
greereeerere
greecoeeroeet
ponreeeenreee
grepreeecereerl
Qereocreenroreo

0 ¢ opreerococheecoer
—— C ococrooprneorroceoeron
C pocceortoreororecoorenee
oo CooCoCoReocnerceoeteorneno
8818 a{n{a/s{u/sinininsinininingieyHLBNET SN
goco QnonoocoCoroehe Joroooroonoo
QLaoc QRCoN0o0onCrnonLOBCooLecoret
goonou o QCoCoCoroCnnCeccnocecooncoofo
0O8Ccoocoh 0 0 CO00CopooCnCorrorptoonorpltoren
COLGOCCoCiutnn QGoCCopcoopeorreorproctContenNto
COCOCRCCOCO0OoC C ootoorrptococceerorconerbocceeet
} i aininlniniajaln/nis{nininininisinalnininininis{n snsi s R AR NN ER VBB ERLE

| NET WINS

NET LOSSES

The GRAPH function used iss

v GRAPH RECORD N.B. The +\
[11] NET++\RECORD sum-38can fwcﬂa
(2] ADJUSTED«1+NET-L/NET : used on line 1]

(]) ! o
(3l O'L1+C1[/ADJUSTED) o . SADJUSTED is not part of
e IBM APL

ERIC

Full Tt Provided by ERIC.

00

GENERALIZARILITY

The APL functions developed so far can be generalized to extend to a
clas:. of rules. Changes in the rules of LAST-ONE-LOSUS can be handled simply
by substituting expressions in terms of a variable N ~- where the integers ¥
are allowed in any give MOVE. Specifically, the functions OPTIMAL, COMPUTER,
and DETERMINE need only subatitude N for 3 and N+l for 4. (See Appendix for
complete function displays.) Then, assuming that the appropriate global vari-
ables are specified beforehand, NeD
CUPS+Q(N+1 0)p\N
one is ready to play a generalized "learning" game.

CONCIUS ION

This is but one topic-~the topic of machine learning--which can be taught
using a programming language as a conceptual framework. Many other topics are
suitable for this pedagogical approach, not only topics from computer science
and game theory, but also psychology, linguistics, statistics, soclal sciences,
physical sciences, business, and ecology. Most fruitful are those topics which
require explicit expression of interactive processes or models.

The challenge to educators, then, is to identify such toplcs and to lead
students to better understandings through using A Programming Language.

REFERENCES

[1] Berry, P. et al. "APL and Ingight: The Use of Progrsms to Represent
Concepts in Teaching," IBM Tech Rpt. #320-3020, March, 1973.

[2) 1Iversom, ¥. E., "APL in Exposition,” IBM Tech Rpt. #320-3010, January,
"@/Z.

[3] Iverson, K. E., "APL as an Analytic Notatiop, Proceedings, APL V Con~
ference, Toronto, May, 1973.

[4] Papert, S., "Teaching Children Thinking," MIT LOGO Memo #/2, October,
1971.

[5] Peelle, H., "THE COMPUTER GLASS BOX: Teaching Children Concepts With
APL," Vol. XIV, No. 4, Educational Technology, April, 1974.

[6] Block, H. D., "lLearning in Some Simple Non~Biological Systems," American
Scientist, March, 1965.

RESY Cary oy e ik
. - A rlivisia
oLy
- [

T LASTONFLORRE MNVE

M RGGS«220

(21 MAKE s MO0 MR
[} FRGS«RGRS~-10E
ful +¥IY TF P20 21
rs] +LOSE TP ROG5<t
fe] NEXT MO YReNPDTHAT,
(71 PRASRZGo-NTE
(8] +LOSE TP FGRGS=1
fal +NIN T? EGAR<Y

fio1} +MAKR
11) WIN::RFCORD«ZFONRD
f12) LEAPN TN R«OFPPe
{131 +0
18] LOSE:PPTORDeR®CNARN 71
(153 LEARN

v

U MOVE«COMPUTERWHICH ;OUP

) CUPw CUPST s NHICH«DETFRMINE P55)
(2] +PANDUMR IFA/CUP=0
[3) LEARNING=0OV«1
4] HOYE«PICK(CNP20) /CIP
(5] HICHWHICH
(6] HQYEMOVE Y mRACT GAMTS
[7) +0 [11 PLAY:LAC@AnT LOARS
[81 PANDUMB:“OVF«ESGST 2N 21 +PLAY TP 0<¢GAMTR«GAM " 1
v 7
V UHICH«DETRRMINT FGGS v LFA®Y
1) UHICH«14(N+1) [0A35-1 (1] 0 TR LTARNTINNzORPQ
v (21 Cunar QYR unIcEleo
7
V ONE<PICE “ANY .
[1] ONTeMANY[2D AT Y« MiNY]
o Y srTyP
1] RECOPN« O
[21] CUPS«Q(N21 0)p 1 Nel
v MOYE«OPTIVAL v
1 “OYE«(N+1) | PGS -1
r21 ~0 IF “0VF=9
(3] YOVE«FEGGSL ?Y
7 U GRAPY RECOTD L NEMADIAMED
f1) VP Pey \RPTAARN
(21 ADJNEMTN e g NEP_| yYT
v RRANCH«LTHE JF ~ONDITTION [3] VP14 (d T JANTISTTD Yo < AN NATED
(1] BRRANCH«CONDITION /LINE 7

